- LIPPMAA, E., MÄGI, M., SAMOSON, A., ENGELHARDT, G. & GRIMMER, A.-R. (1980). J. Am. Chem. Soc. 102, 4889–4893.
- LIPPMAA, E., MÄGI, M., SAMOSON, A., TARMAK, M. & ENGELHARDT, G. (1981). J. Am. Chem. Soc. 103, 4992–4996.
- LODGE, E. A., BURSILL, L. A. & THOMAS, J. M. (1980). J. Chem. Soc. Chem. Commun. pp. 875–876.
- McCusker, L. B. & Seff, K. (1981). J. Am. Chem. Soc. 103, 3441–3446.
- MEIER, W. M. (1973). Adv. Chem. Ser. 121, 39-51.
- NEUBÜSER, J. & WONDRATSCHEK, H. (1966). Krist. Tech. 1, 529–543.
- PLUTH, J. J. & SMITH, J. V. (1979). J. Phys. Chem. 83, 741-749.

- PLUTH, J. J. & SMITH, J. V. (1980). J. Am. Chem. Soc. 102, 4704–4708.
- SMITH, J. V. & PLUTH, J. J. (1981). Nature (London), 291, 265.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The XRAY system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- THOMAS, J. M., BURSILL, L. A., LODGE, E. A., CHEETHAM, A. K. & FYFE, C. A. (1981). J. Chem. Soc. Chem. Commun. pp. 276–277.
- THOMAS, J. M., KLINOWSKI, J., FYFE, C. A., HARTMAN, J. S. & BURSILL, L. A. (1981). J. Chem. Soc. Chem. Commun. pp. 678–679.

Acta Cryst. (1982). A38, 825-826

Remarques sur la Symétrie Ponctuelle des Structures Modulées

Par Jean Sivardière

Département de Recherche Fondamentale, Centre d'Etudes Nucléaires de Grenoble, 85X, 38041 Grenoble CEDEX, France

ET ALEX WAINTAL

Laboratoire Louis Néel, CNRS, 166X, 38042 Grenoble CEDEX, France

(Reçu le 19 janvier 1982, accepté le 27 mai 1982)

Abstract

The symmetry of solid modulated phases can be described by generalized four-dimensional groups, as proposed initially by de Wolff [*Acta Cryst.* (1974), A30, 777–785]. In this note alternative derivations of the point symmetries of these phases are given.

La description des phases solides modulées exige une généralisation de la notion de symétrie cristallographique: l'introduction d'une quatrième dimension t décrivant la phase de la modulation et ayant dans certains cas la signification d'un temps, et l'utilisation de super-groupes d'espace (de Wolff, 1974, 1977a,b; Janner & Janssen, 1977).

La supersymétrie ponctuelle des structures modulées a été discutée par de Wolff (1974). Les matrices d'un super-groupe ponctuel G_4 à quatre dimensions sont de la forme:

où S_i est une matrice 3×3 , Q_i une matrice 2×2 et ε_i = ± 1 . Un point **r** de phase *t* est transformé suivant: **r**' = S_i **r** et $t' = \varepsilon_i t$. Les matrices S_i forment le groupe ponctuel G_3 de la structure de base non modulée. G_4 est isomorphe de G_3 , et du groupe magnétique G'_3 obtenu à partir de G_3 en conservant les opérateurs S_i tels que $\varepsilon_i = +1$, et en remplaçant les S_i tels que $\varepsilon_i = -1$ par les antiopérateurs $S'_i = \varepsilon_i S_i$ correspondants.

Enfin, comme l'a montre De Wolff (1977*a*), une structure modulée est décrite par un vecteur **k** de coordonnées irrationnelles tel que, pour tous les S_i de G_3 , $S_i \mathbf{k} = \varepsilon_i \mathbf{k}$, c'est-à-dire: $S'_i \mathbf{k} = \mathbf{k}$. Cette relation exprime l'invariance de **k** dans le groupe G'_3 .

Nous rediscutons ci-après l'énumération des groupes G'_3 et l'orientation du vecteur k.

1. Dans une opération S_i , k se comporte comme un vecteur polaire ordinaire. En particulier:

$$\begin{split} \bar{\mathbf{l}} \mathbf{k} &= -\mathbf{k} \quad (\text{centrosymétrie}) \\ n\mathbf{k} &= \mathbf{k} \quad (\text{axe d'ordre } n \text{ parallèle à } \mathbf{k}) \\ m\mathbf{k} &= \mathbf{k} \quad (\text{miroir } m \text{ parallèle à } \mathbf{k}) \\ m\mathbf{k} &= -\mathbf{k} \quad (\text{miroir perpendiculaire à } \mathbf{k}). \end{split}$$

Dans le renversement du temps 1', k change de signe © 1982 International Union of Crystallography

422 4 <i>mm</i> 42 <i>m</i>	E	4²	4 4 4	$2_x, 2_y$ m_x, m_y $2_x, 2_y$	$2_{xy}, 2_{x\bar{y}} \ m_{xy}, m_{x\bar{y}} \ m_{xy}, m_{x\bar{y}}$	422	4 <i>mm</i>	42 <i>m</i>	G'_3
Γ_1 Γ_2 Γ_2	1 1 1	1 1	1 1 -1	1 -1 1	1 -1 -1	k _z	k _z		4 <i>mm</i> 42'2'
Γ_4 Γ_5	1 2	1 -2	-1 0	-1 0		$\begin{pmatrix} k_y \\ -k_x \end{pmatrix}$	$\begin{pmatrix} k_x \\ k_y \end{pmatrix}$	$\binom{k_z}{\binom{k_y}{k_x}}$	₫'2'm

Tableau 1. Représentations des groupes isomorphes 422, 4mm, 42m et groupes G'₃

Tableau 2. Représentations du groupe 2/m et des groupes G'_3 correspondants

2/m	E	2 _{<i>x</i>}	Ī	m	k	G'_3
$ \begin{array}{c} \Gamma_{1g} \\ \Gamma_{2g} \\ \Gamma_{1u} \\ \Gamma_{2u} \end{array} $	1 1 1 1		$1 \\ 1 \\ -1 \\ -1 \\ -1$	1 1 -1 1	kz kx, ky	2/m' 2'/m

(de Wolff, 1977b). **k** est donc invariant dans les opérations suivantes: $\overline{1}'$, *n* (axe d'ordre quelconque parallèle à **k**), *m* (miroir contenant **k**), *m'* (antimiroir perpendiculaire à **k**). Par suite, sa symétrie magnétique est celle du groupe limite ∞/m' $m = \infty m \times \overline{1}'$ (de même un vecteur **r** ordinaire est invariant dans $\infty m \times$ 1', et un vecteur magnétique **M** dans ∞/m m' = $\infty m' \times \overline{1}$).

D'après le principe de Curie, les groupes G'_3 sont donc les 31 sous-groupes de ∞/m' m analogues aux 31 sous-groupes ferromagnétiques G_m de ∞/m m'.

2. L'ensemble des ε_i forme une représentation ε de G_4 donc de G_3 . ε n'est autre que la représentation alternante qui définit le groupe magnétique G'_3 (Niggli & Wondratschek, 1960; Bertaut, 1968): son noyau est un sous-groupe invariant d'indice 2 de G_3 . Comme l'a noté de Wolff (1977*a*), cette représentation est contenue au moins une fois dans la représentation vectorielle V de G_3 . On en déduit une deuxième méthode d'énumération des groupes G'_3 .

Ainsi (voir Tableau 1) la représentation vectorielle de $G_3 = 422$ est $V = \Gamma_2 + \Gamma_5$; le seul groupe G'_3 isomorphe de G_3 est donc défini par la représentation alternante $\varepsilon = \Gamma_2$, c'est le groupe 42'2' (si $G_3 = 432$, $V = \Gamma_4$ irréductible, il n'existe pas de groupe G'_3 isomorphe de G_3).

3. Le vecteur **k** se transforme dans la représentation vectorielle V de G_3 . Soit k_i la composante de **k** se transformant dans ε (k_z dans l'exemple ci-dessus): k_i est invariante dans G'_3 , puisque εV , représentation vectorielle de G'_3 , contient une fois la représentation identité Γ_1 . Le Tableau 2 fournit les groupes G'_3 isomorphes de $G_3 = 2/m$ et les directions des vecteurs **k** qu'ils laissent invariants ($V = \Gamma_{1u} + 2\Gamma_{2u}$).

4. Comme le montre le Tableau 1, on peut rechercher aisément les groupes G'_3 isomorphes de tous les groupes G_3 isomorphes d'un même groupe, par exemple 422, 4mm et $\bar{4}2m$. Ces groupes G_3 ont les mêmes représentations, mais la représentation V dépend du groupe.

5. Comparons les 31 groupes G'_3 et les 31 groupes ferromagnétiques G_m . k se transforme suivant $V \deg G_3$ et $\varepsilon V \deg G'_3$; un vecteur magnétique **M** se transforme suivant la représentation vectorielle axiale $\tilde{V} \deg G_3$ et suivant la représentation $\varepsilon \tilde{V}$ du groupe magnétique G_m associé à ε . Un groupe G'_3 est tel que V contient ε , un groupe ferromagnétique est tel que \tilde{V} contient ε .

Par suite si G_3 est propre, $\tilde{V} \equiv V$ et les groupes G'_3 et G_m associés à G_3 sont identiques. Si G_3 est impropre ou centrosymétrique, comme V et \tilde{V} ont la même réductibilité, on obtient autant de groupes G'_3 que de groupes G_m isomorphes de G_3 . On a ainsi les correspondances:

G_3	G'_3	G_m
422	42'2'	42'2'
4mm	4 <i>mm</i>	4 <i>m'm</i>
4 2m	₫'2'm	4'2m'

6. Dans les opérations $\hat{\mathbf{l}}$ et $\mathbf{l'}$, \mathbf{k} se comporte comme un courant électrique \mathbf{j} . Effectivement les groupes de symétrie G'_3 énumérés par de Wolff sont identiques aux groupes 'pyroconductifs' (Ascher, 1965) décrivant la symétrie des cristaux porteurs de courants électriques spontanés.

Références

- ASCHER, E. (1965). Helv. Phys. Acta, 39, 40-48.
- BERTAUT, E. F. (1968). Acta Cryst. A24, 217-231.
- JANNER, A. & JANSSEN, T. (1977). Phys. Rev. B, 15, 643-658.
- NIGGLI, A. & WONDRATSCHEK, H. (1960). Z. Kristallogr. 114, 215-225.
- WOLFF, P. M. DE (1974). Acta Cryst. A 30, 777-785.
- WOLFF, P. M. DE (1977a). Acta Cryst. A33, 493-497.
- WOLFF, P. M. DE (1977b). Symmetry Classification of Modulated Structures. En Electron-Phonon Interactions and Phase Transitions, edité par T. RISTE, pp. 153-169. New York: Plenum Press.